Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality.
نویسندگان
چکیده
Downstream metabolic events can contribute to the lethality of drugs or agents that interact with a primary cellular target. In bacteria, the production of reactive oxygen species (ROS) has been associated with the lethal effects of a variety of stresses including bactericidal antibiotics, but the relative contribution of this oxidative component to cell death depends on a variety of factors. Experimental evidence has suggested that unresolvable DNA problems caused by incorporation of oxidized nucleotides into nascent DNA followed by incomplete base excision repair contribute to the ROS-dependent component of antibiotic lethality. Expression of the chimeric periplasmic-cytoplasmic MalE-LacZ72-47 protein is an historically important lethal stress originally identified during seminal genetic experiments that defined the SecY-dependent protein translocation system. Multiple, independent lines of evidence presented here indicate that the predominant mechanism for MalE-LacZ lethality shares attributes with the ROS-dependent component of antibiotic lethality. MalE-LacZ lethality requires molecular oxygen, and its expression induces ROS production. The increased susceptibility of mutants sensitive to oxidative stress to MalE-LacZ lethality indicates that ROS contribute causally to cell death rather than simply being produced by dying cells. Observations that support the proposed mechanism of cell death include MalE-LacZ expression being bacteriostatic rather than bactericidal in cells that overexpress MutT, a nucleotide sanitizer that hydrolyzes 8-oxo-dGTP to the monophosphate, or that lack MutM and MutY, DNA glycosylases that process base pairs involving 8-oxo-dGTP. Our studies suggest stress-induced physiological changes that favor this mode of ROS-dependent death.
منابع مشابه
A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the D. melanogaster autosomal genome
Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3 instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-offunction mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are req...
متن کاملA Screen for F1 Hybrid Male Rescue Reveals No Major-Effect Hybrid Lethality Loci in the Drosophila melanogaster Autosomal Genome
Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are ...
متن کاملGenetic testing of the hypothesis that hybrid male lethality results from a failure in dosage compensation.
Several recent studies have suggested that F(1) hybrid male lethality in crosses between Drosophila melanogaster and D. simulans is due to a failure in dosage compensation, caused by incompatibilities between D. simulans dosage compensation proteins and the D. melanogaster X chromosome. Contrary to the predictions of this hypothesis, mutations in four essential D. melanogaster dosage compensati...
متن کاملEvaluation of Radio-Protective Effects of N-Acetylcysteine on Radiation-Induced Lethality in Mice
Introduction It has long been known that ionizing radiation can lead to detrimental effects in normal cells. In this light, Radioprotective chemicals have been used to decrease morbidity or mortality caused by ionizing irradiation. This study aimed to evaluate the radio-protective effect of N-acetylcysteineagainst radiation-induced mortality in male mice. Materials and Methods 52 healthy mal...
متن کاملThe Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids.
The Drosophila melanogaster mutation Hmr rescues inviable hybrid sons from the cross of D. melanogaster females to males of its sibling species D. mauritiana, D. simulans, and D. sechellia. We have extended previous observations that hybrid daughters from this cross are poorly viable at high temperatures and have shown that this female lethality is suppressed by Hmr and the rescue mutations In(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره شماره
صفحات -
تاریخ انتشار 2017